
Thus, covariance and form-invariance are distinct concepts. Transformations ensuring 

covariance of field equations in general include transformations between different admissible 
systems of reference not equally suited for the description of physical phenomena. In con- 
trast to this, transformations ensuring form-invariance of the metric tensor of space--time 
(and hence also form-invariance of equations) include transformations only between systems 
of reference which are equivalent from a physical point of view: in these systems of refer- 
ence all physical phenomena occur in the same way with corresponding initial and boundary 
conditions. 

Since the geometry of space--time in passing between different systems of reference does 
not change and remains pseudo-Euclidean, for any system of reference, inertial or noninertial, 
there exists a 10-parameter group of coordinate transformations leaving the metric form-in- 
variant. Thus, in pseudo-Euclidean space--time for any system of reference we can find an in- 
finite collection of other systems of reference, transformations between which leave the met- 
ric form-invariant. 

This means that in pseudo-Euclidean space--time a generalized principle of relativity 
formulated in [8-9] holds: for any physical system of reference we choose (inertial or non- 
inertial) it is always possible to find an infinite collection of other systems of reference 
so that all physical phenomena in them occur in the same way as in the initial system of 
reference, so that we do not and cannot possess the means to distinguish by experimental in 
which reference system of this infinite collection we are located. 

Thus, Minkowski's geometry has general character, being the natural geometry for all 
known fields and thus guaranteeing for them that the generalized principle of relativity is 
satisfied. Pseudo-Euclidean space--time is not a priori given from the start with an indepen- 

dent existence. Its existence is inseparable from the existence of matter, since this is 
the geometry in which the evolution of matter takes place. 

10. Connection of Conservation Laws with the Geometry of Space--Time 

The possibility of obtaining conservation laws for a closed system of interacting fields 
depends to large extent on the character of the geometry of space--time. 

As is known [I, 2], the construction of a theory of any physical field can be carried 
out on the basis of a Lagrangian formalism. In this case the physical field is described 
by some function of coordinates and time called the field function, the equations for which 
can be obtained from the variational principle of stationary action. Aside from the field 
equations, the Lagrangian path to constructing a classical theory of wave fields provides the 
possibility of obtaining a number of differential relations called differential conservation 
laws. These relations are consequences of the invariance of the action function under coor- 
dinate transformations of space--time and relate the local dynamic characteristics of the 
field and their covariant derivatives in the geometry natural for them. 

At present, it is customary in the literature to distinguish two types of differential 
conservation laws: strong and weak. A strong law is usually a differential relation which 
is satisfied because of invariance of the action function under coordinate transformations 
and does not require that the equations of motion of the field be satisfied. Weak conserva- 
tion laws can be obtained from strong conservation laws by considering the equations of mo- 
tion for the system of interacting fields. An example of a weak conservation law is the co- 
variant equation (2.17) of conservation of the energy--momentum tensor of matter in Riemannian 
space--time. This equation was obtained as a consequence of the requirement of invariance of 
the action function of matter (2.10) under any infinitely small coordinate transformation 
(2.12) and the condition that the equations of motion of matter be satisfied (2.11). 

It should be emphasized that, in spite of the name, differential conservation laws in 
general do not assert conservation of anything either locally or globally. They are simply 
differential identities connecting various characteristics of the field which hold because 
the action function does not change under an arbitrary coordinate transformation (i.e., it 
is a scalar). These relations received their name from the analogy with the corresponding 
differential conservation laws in pseudo-Euclidean space--time where the corresponding inte- 
gral laws can be obtained from the differential conservation laws. Thus, for example, writ- 
ing the law of conservation of the total energy-momentum tensor of interacting fields [I, 2] 
in the Cartesian coordinate system of pseudo-Euclidean space--time, we have 

0 ~t . 0 . ~  
-6ft ~ t~-~t =u. 
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Integrating this equality over some volume and using the Gauss-Ostrogradskii theorem, 

we obtain 

a__ ~ dVtO~_ - _~ t~dS~. dt 

This relation implies that the change of the energy--momentum of a system of interacting 
fields in some volume is equal to the flux of energy-momentum through the surface bounding 
this volume. If there is no flux of energy--momentum through the surface 

~ t ~ tdS~  = O, 

then we arrive at the law of conservation of the total four-momentum of an isolated system 

d i ~Fp =0, 

where 

p~____ l__c f t~ 

Analogous integral relations in pseudo-Euclidean space--time can also be obtained for the an- 
gular momentum. 

In an arbitrary Riemannian space--time the presence of a differential covariant conser- 
vation equation does not guarantee the possibility of obtaining a corresponding integral 
conservation law. 

The possibility of obtaining integral conservation laws in an arbitrary Riemannian 
space--time is entirely predetermined by its geometry and is closely connected with the exis- 
tence of Killing vectors of the given space--time or, as is sometimes said, with the presence 
of a group of motions in Riemannian space--time. We shall consider this question in somewhat 
more detail, since the formalism developed here can be used to obtain integral conservation 
laws in arbitrary curvilinear coordinate systems of pseudo-Euclidean space--time. 

In an arbitrary Riemannian space--time by a method similar to that expounded in Sec. 2 
it is possible to obtain a covariant equation of conservation of the total energy~omentum 
tensor of the system: 

v Tmt--~ Tmt._Lpl Tnm• (10 1) 
l ~ - -  ~ l  l In  ~ n l  - -  * 

We multiply this equation by a Killing vector, i.e., by a vector ~m satisfying the Kil- 
ling equations 

Vn~m -~- Vm~n ~-~-0. ( 10 .  2 ) 

Because of the syn~netry of the tensor Tnm, the expression obtained can be written in the form 

~m V t Trot= Vl [~mTmtl-----0. 

Using the properties of the covariant derivative, from this we have 

i e [y_grm n ]=0. 

Since the left side of this equality is a scalar, we can multiply it by ~dV and integrate 
over some volume. As a result, we obtain the integral conservation law in Riemannian space-- 
time 

~'a S ~/------gT~ (10.3) 

If there is no flux of the three-dimensional vector T~m~ m through the surface bounding the 
volume, then 

S V'--"~T~ (10. 4) 

Thus, if Killing vectors exist from the differential conservation law (I0.I) it is pos- 
sible to obtain integral conservation laws (10.3),'(10.4). 
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We shall now determine under what conditions on the metric of Riemannian space--time the 
Killing equations (10.2) have solutions, i.e., under what conditions there exists a vector 
satisfying Eqs. (10.2). We first observe that the Killing equations (10.2) are a consequence 
of the condition that the Lie variation of the metric tensor of Riemannian space--time under 
infinitesimal coordinate transformations (2.12) vanish. 

Indeed, comparing expressions (2.16) and (10.2), we see that the Killing equations re- 
quire that the Lie variation of the metric tensor of Riemannian space--time vanish: 

~L g . i = O .  

Thus, the Killing vectors describe infinitely small coordinate transformations leaving the 
metric form-invariant. 

The Killing equations (10.2) represent a system of linear partial differential equations 
of first order. According to the general theory [17], to determine conditions for the inte- 
grability of a system of partial differential equations it is necessary to reduce it to the 
form 

~ x~), (I0.5) 

w h e r e  O ~ a r e  unknown  f u n c t i o n s ;  i ,  n = 1, 2 , . . . , N ;  a = 1, 2 , . . . , M .  Then t h e  i n t e g r a b i l i t y  
c o n d i t i o n  f o r  s y s t e m  ( 1 0 . 5 )  c a n  be  o b t a i n e d  f r o m  t h e  e q u a l i t y  

O x i O x n - - O x n O x  i' 

by replacing the partial derivatives of first order by the right side of Eqs. (10.5): 

a , d  -F a*ta = a * n ~ +  a*~ ~ b (10.6) 

If the integrability conditions (10.6) are satisfied identically by virtue of Eqs. 
(10.5), then system (10.5) is called completely integrable, and its solution contains M para- 
meters -- the maximum possible number of arbitrary constants for the given system. 

If system (10.5) is not completely integrable, then its solution will contain a fewer 
number of arbitrary constants. We shall determine under what conditions the solution of the 
Killing equations (10.2) in a Riemannian space Vn contains the maximum possible number of 
parameters and what this number is. 

We shall carry out all computations in an explicitly covariant form which is a covariant 
generalization of the scheme presented above for finding integrability conditions for a sys- 
tem of partial differential equations. For this we first reduce the Killing equations (10.2) 
to the required form. We covariantly differentiate the Killing equations (10.2) with respect 
to the variable xn. As a result, we obtain 

Because of this equation we have 

~l; jn-JF~j; tn-~-~i ;n j ' J[ -~n; t j - -~ j ;n l - -~n; j t - -~-O.  

Regrouping terms in this expression, we obtain 

rib;j,, + ~1~;,,/+ (t i tan - -  r l j ; , , )  -I- Ol,,; u - -  rl,,;j ~) = O. 

On the other hand, by the commutation rule for covariant derivatives, we have 

k 
~li;nj - -  ~]t;]n ---~ llhRiny- 

Substituting expression (10.8) into relation (10.7), we obtain 
h h h 

"l]IzRni j = 2rl~;j~ -i- ~l~R~j -I- ~lhR j~- l -  O. 

Using the Ricci identity 

we have 

h h 

h h h 
ThR~nj + Oj~nrh = ~hR~i j .  

(lO.7) 

(10.8) 

(10.9) 

(10.10) 
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Therefore, expression (10.9) can be written in the form 

~;~--~R~/. 

We thus have the following variant equations: 

R ~ ~;~-~n;~=0, ~;~n=-- n~j~. (10.11) 

We shall transform this system of covariant differential equations into a system con- 
taining only first covariant derivatives. For this together with the n unknown components 
of the vector ~m we introduce the unknown tensor ~mi according to the equations 

Nhm-----~z. (10.12) 

This tensor contains n ~ unknown components but of these only n(n -- I)/2 components are 
independent, since this tensor is antisymmetric by Eqs. (10.2) and (10.12): 

~m~-[-%im =0.  (10.13) 

Considering all this, the desired system of covariant differential equations has the form 

N,~;~--Lmi, Lm~;j=N~a~iz, (10o 14) 

Thus, we have brought the Killing equations (10.2) to a system of special form consist- 
ing of linear differential equations solved for the covariant derivatives of first order. 

This system is a covariant generalization of system (10.5) whereby the role of the un- 
known functions @= is played by the n(n + I)/2 components of the tensors ~mi and ~m: 

~~ ~,}. 

The integrability condition for system (10.14) can be obtained from the commutation rule 
of covariant derivatives which is a consequence of the independence of the order of the de- 
rivatives in partial differentiation. On the basis of this rule, we have 

h h (10.15) 
gtm;]l--~m;U~--~ih~myl-]-LhmRiyt. 

Replacing the first covariant derivatives on the left sides of these equalities by their ex- 
pressions (10.14) and using the property (10.13) that the tensor ~im is antisymmetric, we 
obtain the inequality conditions for system (10.14) in the form 

k~; j - -Lt j ;~  = ~R~mj, ( I O. 16) 

[~hRj~ ] ; t - -  k =LihR~jl~-Lh~Rzjl. (10 .  ! 7) 

It is easy to see that the first of these expressions is satisfied identically by Eqs. 
(10.14) of the system and the properties of the curvature tensor. Thus, if condition (10.17) 
is identically satisfied by virtue of only properties of the symmetry of Riemannian space-- 
time, then system (10.14) will be completely integrable, and hence the solution of the Killing 
equations (10.2) will contain the maximum possible number M = n(n + I)/2 of arbitrary con- 
stants. Since the unknown functions Ni and %mi = --~in contained in system (10.14) must here- 
by be independent, the left side of expression (10.17) vanishes provided that the following 
conditions are satisfied: 

h" h R.a/;~-Rt~/;.,=O, (10.18) 

s k h s ' s  h h s s h h s h s 81 O~ml--~ Rlmt--~h Rjmt-'~-Si R jml'-[-~)l RmU--~t Rmlj-~,nsO~u-[-~m Riu:O. (10.19) 

Contracting expressions (10.19) on the indices ~ and s with consideration of the relations 

s �9 s Ri,n~=R~m, Rsm~-~-O 
and the Ricci identity (10.10) gives 

(•__ h h 
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From this it follows that 

I Rt~tj= ~--1 (gjtRml-- gltRj~). (10.20) 

Multiplying this equality by gmi, we obtain 

nRj~ =&zR. 

Substituting this relation into expression (I0.20), we obtain a condition that equality 
(10.19) be satisfied identically: 

R R~o n (.--1) [gj~gmi--gil&~]. ( 1 0 . 2 1 )  

From e x p r e s s i o n  ( 1 0 . 2 1 )  and Eq. ( 1 0 . 1 8 )  we o b t a i n  t h e  c o n d i t i o n  t h a t  t h e  s c a l a r  c u r v a -  
t u r e  s h o u l d  s a t i s f y :  

0 
[~jhg,~ _ ~,~gjm] ~ R - -  [~jhg,~ _ ~ hg, j] ~ R  = 0. 

q 

M u l t i p l y i n g  t h i s  r e l a t i o n  by 6~g m l ,  we have  

(n--  1) OR - -0  
~ x ]  - -  " 

S i n c e  i n  t h e  c a s e  we c o n s i d e r  n > 1, i n  o r d e r  t h a t  t h i s  c o n d i t i o n  be s a t i s f i e d  i t  i s  
n e c e s s a r y  and s u f f i c i e n t  t h a t  R = c o n s t .  Hence ,  t h e  i n t e g r a b i l i t y  c o n d i t i o n s  ( 1 0 . 1 8 )  and 
( 1 0 . 1 9 )  f o r  t h e  K i l l i n g  e q u a t i o n s  ( 1 0 . 2 )  w i l l  be i d e n t i c a l l y  s a t i s f i e d  i f  and o n l y  i f  t h e  
c u r v a t u r e  t e n s o r  o f  R i e m a n n i a n  s p a c e  t i m e  has  t h e  fo rm 

R 
R~m~j= n ( n - 1 )  [gj*gm~--gH&~], 

where  R = c o n s t .  

Hence ,  t h e  K i l l i n g  e q u a t i o n s  have  s o l u t i o n s  c o n t a i n i n g  t h e  maximom p o s s i b l e  number M = 
n ( n  + 1 ) /2  o f  a r b i t r a r y  c o n s t a n t s  ( p a r a m e t e r s )  i f  and o n l y  i f  t h e  R i e m a n n i a n  s p a c e  V n i s  a 
s p a c e  of  c o n s t a n t  c u r v a t u r e .  I f  t h e  s p a c e  V n i s  n o t  a s p a c e  of c o n s t a n t  c u r v a t u r e ,  t h e n  t h e  
number of  p a r a m e t e r s  w i l l  be l e s s .  

Hence ,  f rom a m a t h e m a t i c a l  p o i n t  of  v i ew  t h e  p r e s e n c e  o f  i n t e g r a l  c o n s e r v a t i o n  laws  o f  
energy--momentum and a n g u l a r  momentum i s  a r e f l e c t i o n  of  p a r t i c u l a r  p r o p e r t i e s  o f  s p a c e - - t i m e :  
i t s  homogeneous  and i s o t r o p i c  p r o p e r t i e s .  The re  e x i s t  t h r e e  t y p e s  o f  f o u r - d i m e n s i o n a l  s p a c e s  
[15] p o s s e s s i n g  t h e  p r o p e r t i e s  o f  h o m o g e n e i t y  and i s o t r o p i c i t y  t o  t h e  e x t e n t  t h a t  t h e y  a d m i t  
t h e  i n t r o d u c t i o n  o f  10 i n t e g r a l s  of  t h e  m o t i o n  f o r  a c l o s e d  s y s t e m :  a s p a c e  o f  c o n s t a n t  n e g a -  
t i v e  c u r v a t u r e  ( L o b a c h e v s k i i  s p a c e ) ,  a s p a c e  o f  z e r o  c u r v a t u r e  ( p s e u d o - E u c l i d e a n  s p a c e ) ,  and 
a space of constant positive curvature (the space of Riemann). The first two spaces are in- 
finite, having infinite volume, while the third space is finite, having finite volume but 
no boundaries. 

We shall now find a Killing vector in an arbitrary curvilinear coordinate system of 
pseudo-Euclidean space--time. For this. we first write the Killing equations in a Cartesian 
coordinate system: 

0 0 
Ox i ~ - } - ~ q i = O .  

Hence, for determining Kiling vectors we have a system of 10 linear partial differential equa- 
equations of first order. 

Solving this system by the usual rules, we obtain 

~i=a~+~/~  x ~, (10,22) 

where aiis an arbitrary constant, infinitely smallvector and ~mi is an arbitrary constant, in- 
finitely small tensor satisfying the condition 

Thus, the solution (10.22), as was to be expected, contains all 10 arbitrary parameters. 
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Since expression (10.22) contains 10 independent parameters, we actually have !0 inde-" 
pendent Killing vectors, and relation (10.22) is a linear combination of these 10 independent 

vectors. 

We shall clarify the meaning of these parameters. Substituting the expression (!0.22) 
into relation (2.12), we obtain 

xl~=a~ + ~  ~ x~ + x~. ( 1 0 . 2 3 )  

It is evident from this expression that the four parameters a i are the components of a 
four-vector of infinitely small translations of the system of reference. The three parameters 
~B are components of a tensor of rotation by an infinitely small angle about some axis (so- 
called pure rotations). The three parameters m0$ describe infinitely small rotations in the 
plane x~ B -- so-called Lorentz rotations. Since the metric tensor Ymi is form-invariant under 
translations, pseudo-Euclidean space--time is homogeneous; its properties do not depend on at 
what point of space--time the origin of the coordinates is placed. Similarly, form-invariance 
of the metric tensor Ymi under four-dimensional rotations implies its isotropicity. This 
means that in pseudo-Euclidean space--time all directions are equivalent. 

Thus, pseudo-Euclidean space--time admits a 10 parameter group of motions eonsiting of a 
four-parameter subgroup of translations and a six-parameter subgroup of rotations. The pre- 
sence of this group of motion and the existence of the corresponding Killing vectors guaran- 
tees the'presence of 10 integral conservation laws of energy-momentum and angular momentum 
of a system of interacting fields. 

Indeed, noting that in a Cartesian coordinate system --r = I, from the general relation 
(10.3) in the case of the subgroup of translations (~i = ai) we have 

d I T ~  ~. dxo 

Since a m is an arbitrary constant vector, from this equality we have 

dx o T~ = - -  

For an isolated system of interacting fields the expression on the right side of this 
relation is equal to zero as a result of which its total four-momentum is conserved: 

P~  = S T~ = const .  (10,24) 

Altogether analogously, for 

we obtain 

S i n c e  t h e  c o n s t a n t  t e n s o r  mmi i s  a n t i s y m m e t r i c ,  f r o m  t h i s  we o b t a i n  t h e  i n t e g r a l  c o n -  
s e r v a t i o n  l aw  o f  a n g u l a r  momentum: 

d 
ax. l dV[T~176  (10o25) 

For an isolated system its total angular momentum is conserved due to the vanishing of the 
right side of equality (10.25): 

M'n*= I d V  [T~ i -  T~ (10.26) 

It should be noted that we can obtain the solution of Killing's equations (I0.2) in 
arbitrary curvilinear coordinates of pseudo-Euclidean space--time from the solution (10.23) 
of these equations in a Cartesian coordinate system because of the tensorial character of 
the quantities xi and H i. For this we go over in expression (10.23) from Cartesian coordi- 
nates x I to arbitrary curvilinear coordinates x~: 
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We then obtain 

Of t j {~ (x.)). 

Thus, in an arbitrary curvilinear coordinate system of pseudo-Euclidean space--time the 
Killing vector has the form 

O/(xH) O/(x~) 
Bm - -  a t  q - -  ~ l s f  s (XH).  ( I O.  2 7  ) ox~ o ~  

G e n e r a l i z a t i o n  o f  e x p r e s s i o n s  ( 1 0 . 2 4 ) - ( 1 0 . 2 6 )  to the  c a s e  o f  a r b i t r a r y  c u r v i l i n e a r  c o -  
ordinates presents no difficulty. Proceeding exactly as above, for the four-momentum of an 
isolated system we obtain 

1 ~ 3 om O / ( x ~ )  P~ = I l / ' -  y (xH) dxHdxHdx~T (x~) 

The a n t i s y n ~ e t r y  t e n s o r  o f  a n g u l a r  momentum in  t h i s  c a s e  has  the  form 

-- - -? (x# )dx#dx#dx#T~  (x#)[ fro(x#) Ox--~ / (XH) ~x~H ]" I I / i 2 3 ~ O/(xH) _~. .OYm(XH) 
M t ~  - -  

Thus, the  p o s s i b i l i t y  of  o b t a i n i n g  i n t e g r a l  c o n s e r v a t i o n  laws depends  on the  c h a r a c t e r  
o f  t he  g e o m e t r y  o f  space - - t ime .  In  the  c a s e  o f  f o u r  d i m e n s i o n s  ( p h y s i c a l  space- - t ime)  o n l y  
spaces of constant curvature possess all I0 integral conservation laws, while in other spaces 
the number of them is less than 10. 

11. A Field Approach to the Description of Gravitational Interaction 

In order that the gravitational field may be considered a physical field in the spirit 
of Faraday--Maxwell with its usual properties of a carrier of energy--momentum, it suffices for 
us to select as a natural geometry for the gravitational field the geometry of a space of 
constant curvature. Since experimental data obtained in studying the strong, weak, and elec- 
tromagnetic interactions bear witness to the fact that for fields connected with these inter- 
actions the natural geometry of space--time is pseudo-Euclidean, at least at the present stage 
of our knowledge it may be assumed that this geometry is the sole natural geometry for all 
physical processes including gravitational processes. 

This assertion constitutes one of the basic propositions of the field approach to the 
theory of gravitational interaction we developed. It is altogether obvious that it will lead 
to fulfillment of all conservation laws of energy-momentum and angular momentum, ensuring the 
existence of all 10 Lntegrals of the motion for a system consisting of the gravitational field 
and the remaining fields of matter. The gravitational field in the field approach, similar 
to all other physical fields, is characterized by its energy-momentum tensor which contri- 
butes to the total energy--momentum tensor of the system. This is the basic difference of our 
approach from Einstein's theory. It should be noted that, in addition to general simplicity, 
in pseudo-Euclidean space--time the integration of tensor quantities has an altogether definite 
meaning. 

Another key question arising in the construction of a theory of the gravitational field 
is the question of the nature of the interaction of the gravitational field with matter. In 
acting on matter the gravitational field can effectively alter its geometry if it enters the 
terms for the highest derivatives in the equations of motion of matter. The motion of ma- 
terial bodies and other physical fields in pseudo-Euclidean space--time under the action of 
the gravitational field will then be indistinguishable from their motion in some effective 
Riemannian space--time. Universality of the action of the gravitational field on matter fol- 
lows from experimental data, and hence the effective Riemannian space--time will be the same 
for all matter. 

This leads us to an assertion which we call the identity principle (the principle of 
geometrization) which is defined as follows: The equations of motion of matter under the ac- 
tion of a gravitational field in pseudo-Euclidean space--time with metric tensor Yni can be 
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